Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Int J Clin Pharm ; 45(3): 613-621, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2317592

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) is a highly infectious disease that can be treated with antivirals in addition to other antimicrobials in cases of secondary or concomitant infections. This creates potential for antimicrobials misuse, which increases antimicrobial resistance (AMR). Pharmacists are known to undertake prominent roles in combatting AMR. AIM: The aim of this review was to characterize pharmacist-driven interventions that have been performed in patients with COVID-19 globally and describe their impact on antimicrobial use. METHOD: We followed the Joanna Briggs Institutes manual framework for scoping reviews in our study. Studies that reported antimicrobial stewardship (AMS) interventions performed by pharmacists in COVID-19 patients were included. Articles that did not report outcomes or did not mention pharmacists in the intervention were excluded. Restrictions included English-only articles from inception date until June 2022. Articles were searched from four databases. RESULTS: Eleven publications were included in the review. The most common AMS intervention was pharmacist-driven interventions reported in 63.2% of all studies, followed by guideline development and application (26.3%), and medication supply coordination (10.5%), respectively. The outcomes of the interventions were difficult to compare but showed a reduction in antimicrobial use and prevention of adverse drug reactions with a relatively high acceptance rate from physicians. CONCLUSION: Pharmacists played an important role in performing AMS-related interventions in COVID-19 patients and helped in the fight against the worsening of AMR during the pandemic. The impact of pharmacist-driven AMS interventions in patients with COVID-19 seemed to be positive and improved outcomes related to antimicrobial use.


Subject(s)
Anti-Infective Agents , Antimicrobial Stewardship , COVID-19 , Humans , Pharmacists , Anti-Infective Agents/adverse effects , Antiviral Agents/therapeutic use
2.
JAMA ; 323(24): 2493-2502, 2020 06 23.
Article in English | MEDLINE | ID: covidwho-2219559

ABSTRACT

Importance: Hydroxychloroquine, with or without azithromycin, has been considered as a possible therapeutic agent for patients with coronavirus disease 2019 (COVID-19). However, there are limited data on efficacy and associated adverse events. Objective: To describe the association between use of hydroxychloroquine, with or without azithromycin, and clinical outcomes among hospital inpatients diagnosed with COVID-19. Design, Setting, and Participants: Retrospective multicenter cohort study of patients from a random sample of all admitted patients with laboratory-confirmed COVID-19 in 25 hospitals, representing 88.2% of patients with COVID-19 in the New York metropolitan region. Eligible patients were admitted for at least 24 hours between March 15 and 28, 2020. Medications, preexisting conditions, clinical measures on admission, outcomes, and adverse events were abstracted from medical records. The date of final follow-up was April 24, 2020. Exposures: Receipt of both hydroxychloroquine and azithromycin, hydroxychloroquine alone, azithromycin alone, or neither. Main Outcomes and Measures: Primary outcome was in-hospital mortality. Secondary outcomes were cardiac arrest and abnormal electrocardiogram findings (arrhythmia or QT prolongation). Results: Among 1438 hospitalized patients with a diagnosis of COVID-19 (858 [59.7%] male, median age, 63 years), those receiving hydroxychloroquine, azithromycin, or both were more likely than those not receiving either drug to have diabetes, respiratory rate >22/min, abnormal chest imaging findings, O2 saturation lower than 90%, and aspartate aminotransferase greater than 40 U/L. Overall in-hospital mortality was 20.3% (95% CI, 18.2%-22.4%). The probability of death for patients receiving hydroxychloroquine + azithromycin was 189/735 (25.7% [95% CI, 22.3%-28.9%]), hydroxychloroquine alone, 54/271 (19.9% [95% CI, 15.2%-24.7%]), azithromycin alone, 21/211 (10.0% [95% CI, 5.9%-14.0%]), and neither drug, 28/221 (12.7% [95% CI, 8.3%-17.1%]). In adjusted Cox proportional hazards models, compared with patients receiving neither drug, there were no significant differences in mortality for patients receiving hydroxychloroquine + azithromycin (HR, 1.35 [95% CI, 0.76-2.40]), hydroxychloroquine alone (HR, 1.08 [95% CI, 0.63-1.85]), or azithromycin alone (HR, 0.56 [95% CI, 0.26-1.21]). In logistic models, compared with patients receiving neither drug cardiac arrest was significantly more likely in patients receiving hydroxychloroquine + azithromycin (adjusted OR, 2.13 [95% CI, 1.12-4.05]), but not hydroxychloroquine alone (adjusted OR, 1.91 [95% CI, 0.96-3.81]) or azithromycin alone (adjusted OR, 0.64 [95% CI, 0.27-1.56]), . In adjusted logistic regression models, there were no significant differences in the relative likelihood of abnormal electrocardiogram findings. Conclusions and Relevance: Among patients hospitalized in metropolitan New York with COVID-19, treatment with hydroxychloroquine, azithromycin, or both, compared with neither treatment, was not significantly associated with differences in in-hospital mortality. However, the interpretation of these findings may be limited by the observational design.


Subject(s)
Anti-Infective Agents/therapeutic use , Azithromycin/therapeutic use , Coronavirus Infections/drug therapy , Hospital Mortality , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Adolescent , Adult , Aged , Anti-Infective Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Azithromycin/adverse effects , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Drug Therapy, Combination , Female , Heart Arrest/etiology , Hospitalization , Humans , Hydroxychloroquine/adverse effects , Logistic Models , Male , Middle Aged , New York , Pandemics , Pneumonia, Viral/mortality , Proportional Hazards Models , Retrospective Studies , SARS-CoV-2 , Young Adult , COVID-19 Drug Treatment
3.
JAMA ; 328(16): 1595-1603, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2084929

ABSTRACT

Importance: The effectiveness of ivermectin to shorten symptom duration or prevent hospitalization among outpatients in the US with mild to moderate symptomatic COVID-19 is unknown. Objective: To evaluate the efficacy of ivermectin, 400 µg/kg, daily for 3 days compared with placebo for the treatment of early mild to moderate COVID-19. Design, Setting, and Participants: ACTIV-6, an ongoing, decentralized, double-blind, randomized, placebo-controlled platform trial, was designed to evaluate repurposed therapies in outpatients with mild to moderate COVID-19. A total of 1591 participants aged 30 years and older with confirmed COVID-19, experiencing 2 or more symptoms of acute infection for 7 days or less, were enrolled from June 23, 2021, through February 4, 2022, with follow-up data through May 31, 2022, at 93 sites in the US. Interventions: Participants were randomized to receive ivermectin, 400 µg/kg (n = 817), daily for 3 days or placebo (n = 774). Main Outcomes and Measures: Time to sustained recovery, defined as at least 3 consecutive days without symptoms. There were 7 secondary outcomes, including a composite of hospitalization or death by day 28. Results: Among 1800 participants who were randomized (mean [SD] age, 48 [12] years; 932 women [58.6%]; 753 [47.3%] reported receiving at least 2 doses of a SARS-CoV-2 vaccine), 1591 completed the trial. The hazard ratio (HR) for improvement in time to recovery was 1.07 (95% credible interval [CrI], 0.96-1.17; posterior P value [HR >1] = .91). The median time to recovery was 12 days (IQR, 11-13) in the ivermectin group and 13 days (IQR, 12-14) in the placebo group. There were 10 hospitalizations or deaths in the ivermectin group and 9 in the placebo group (1.2% vs 1.2%; HR, 1.1 [95% CrI, 0.4-2.6]). The most common serious adverse events were COVID-19 pneumonia (ivermectin [n = 5]; placebo [n = 7]) and venous thromboembolism (ivermectin [n = 1]; placebo [n = 5]). Conclusions and Relevance: Among outpatients with mild to moderate COVID-19, treatment with ivermectin, compared with placebo, did not significantly improve time to recovery. These findings do not support the use of ivermectin in patients with mild to moderate COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04885530.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , COVID-19 , Hospitalization , Ivermectin , Female , Humans , Middle Aged , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Double-Blind Method , Ivermectin/adverse effects , Ivermectin/therapeutic use , SARS-CoV-2 , Treatment Outcome , Anti-Infective Agents/adverse effects , Anti-Infective Agents/therapeutic use , Ambulatory Care , Drug Repositioning , Time Factors , Recovery of Function , Male , Adult
4.
Sci Rep ; 12(1): 14438, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2000930

ABSTRACT

The lack of therapeutic options to fight Covid-19 has contributed to the current global pandemic. Despite the emergence of effective vaccines, development of broad-spectrum antiviral treatment remains a significant challenge, in which antimicrobial photodynamic therapy (aPDT) may play a role, especially at early stages of infection. aPDT of the nares with methylene blue (MB) and non-thermal light has been successfully utilized to inactivate both bacterial and viral pathogens in the perioperative setting. Here, we investigated the effect of MB-aPDT to inactivate human betacoronavirus OC43 and SARS-CoV-2 in vitro and in a proof-of-principle COVID-19 clinical trial to test, in a variety of settings, the practicality, technical feasibility, and short-term efficacy of the method. aPDT yielded inactivation of up to 6-Logs in vitro, as measured by RT-qPCR and infectivity assay. From a photo-physics perspective, the in vitro results suggest that the response is not dependent on the virus itself, motivating potential use of aPDT for local destruction of SARS-CoV-2 and its variants. In the clinical trial we observed variable effects on viral RNA in nasal-swab samples as assessed by RT-qPCR attributed to aPDT-induced RNA fragmentation causing falsely-elevated counts. However, the viral infectivity in clinical nares swabs was reduced in 90% of samples and undetectable in 70% of samples. This is the first demonstration based on quantitative clinical viral infectivity measurements that MB-aPDT is a safe, easily delivered and effective front-line technique that can reduce local SARS-CoV-2 viral load.


Subject(s)
COVID-19 Drug Treatment , Disinfection , Nose , Photochemotherapy , Anti-Infective Agents/adverse effects , Anti-Infective Agents/pharmacology , Disinfection/methods , Feasibility Studies , Humans , Methylene Blue/adverse effects , Methylene Blue/pharmacology , Nose/virology , Pandemics , RNA, Viral/analysis , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Treatment Outcome , Viral Load/drug effects
5.
Trials ; 23(1): 427, 2022 May 21.
Article in English | MEDLINE | ID: covidwho-1849770

ABSTRACT

BACKGROUND: Inappropriate antibiotic use can cause harm and promote antimicrobial resistance, which has been declared a major health challenge by the World Health Organization. In Australian residential aged care facilities (RACFs), the most common indications for antibiotic prescribing are for infections of the urinary tract, respiratory tract and skin and soft tissue. Studies indicate that a high proportion of these prescriptions are non-compliant with best prescribing guidelines. To date, a variety of interventions have been reported to address inappropriate prescribing and overuse of antibiotics but with mixed outcomes. This study aims to identify the impact of a set of sustainable, multimodal interventions in residential aged care targeting three common infection types. METHODS: This protocol details a 20-month stepped-wedge cluster-randomised trial conducted across 18 RACFs (as 18 clusters). A multimodal multi-disciplinary set of interventions, the 'AMS ENGAGEMENT bundle', will be tailored to meet the identified needs of participating RACFs. The key elements of the intervention bundle include education for nurses and general practitioners, telehealth support and formation of an antimicrobial stewardship team in each facility. Prior to the randomised sequential introduction of the intervention, each site will act as its own control in relation to usual care processes for antibiotic use and stewardship. The primary outcome for this study will be antibiotic consumption measured using defined daily doses (DDDs). Cluster-level rates will be calculated using total occupied bed numbers within each RACF during the observation period as the denominator. Results will be expressed as rates per 1000 occupied bed days. An economic analysis will be conducted to compare the costs associated with the intervention to that of usual care. A comprehensive process evaluation will be conducted using the REAIM Framework, to enable learnings from the trial to inform sustainable improvements in this field. DISCUSSION: A structured AMS model of care, incorporating targeted interventions to optimise antimicrobial use in the RACF setting, is urgently needed and will be delivered by our trial. The trial will aim to empower clinicians, residents and families by providing a robust AMS programme to improve antibiotic-related health outcomes. TRIAL REGISTRATION: US National Library of Medicine Clinical Trials.gov ( NCT04705259 ). Prospectively registered in 12th of January 2021.


Subject(s)
Anti-Infective Agents , Antimicrobial Stewardship , Aged , Anti-Bacterial Agents/adverse effects , Anti-Infective Agents/adverse effects , Antimicrobial Stewardship/methods , Australia , Humans , Inappropriate Prescribing/prevention & control , Randomized Controlled Trials as Topic
6.
N Engl J Med ; 386(18): 1721-1731, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1768965

ABSTRACT

BACKGROUND: The efficacy of ivermectin in preventing hospitalization or extended observation in an emergency setting among outpatients with acutely symptomatic coronavirus disease 2019 (Covid-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unclear. METHODS: We conducted a double-blind, randomized, placebo-controlled, adaptive platform trial involving symptomatic SARS-CoV-2-positive adults recruited from 12 public health clinics in Brazil. Patients who had had symptoms of Covid-19 for up to 7 days and had at least one risk factor for disease progression were randomly assigned to receive ivermectin (400 µg per kilogram of body weight) once daily for 3 days or placebo. (The trial also involved other interventions that are not reported here.) The primary composite outcome was hospitalization due to Covid-19 within 28 days after randomization or an emergency department visit due to clinical worsening of Covid-19 (defined as the participant remaining under observation for >6 hours) within 28 days after randomization. RESULTS: A total of 3515 patients were randomly assigned to receive ivermectin (679 patients), placebo (679), or another intervention (2157). Overall, 100 patients (14.7%) in the ivermectin group had a primary-outcome event, as compared with 111 (16.3%) in the placebo group (relative risk, 0.90; 95% Bayesian credible interval, 0.70 to 1.16). Of the 211 primary-outcome events, 171 (81.0%) were hospital admissions. Findings were similar to the primary analysis in a modified intention-to-treat analysis that included only patients who received at least one dose of ivermectin or placebo (relative risk, 0.89; 95% Bayesian credible interval, 0.69 to 1.15) and in a per-protocol analysis that included only patients who reported 100% adherence to the assigned regimen (relative risk, 0.94; 95% Bayesian credible interval, 0.67 to 1.35). There were no significant effects of ivermectin use on secondary outcomes or adverse events. CONCLUSIONS: Treatment with ivermectin did not result in a lower incidence of medical admission to a hospital due to progression of Covid-19 or of prolonged emergency department observation among outpatients with an early diagnosis of Covid-19. (Funded by FastGrants and the Rainwater Charitable Foundation; TOGETHER ClinicalTrials.gov number, NCT04727424.).


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Ivermectin , Adult , Ambulatory Care , Anti-Infective Agents/adverse effects , Anti-Infective Agents/therapeutic use , Bayes Theorem , Double-Blind Method , Hospitalization , Humans , Ivermectin/adverse effects , Ivermectin/therapeutic use , SARS-CoV-2 , Treatment Outcome
7.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1662665

ABSTRACT

Endometriosis, an estrogen-dependent chronic gynecological disease, is characterized by a systemic inflammation that affects circulating red blood cells (RBC), by reducing anti-oxidant defenses. The aim of this study was to investigate the potential beneficial effects of licorice intake to protect RBCs from dapsone hydroxylamine (DDS-NHOH), a harmful metabolite of dapsone, commonly used in the treatment of many diseases. A control group (CG, n = 12) and a patient group (PG, n = 18) were treated with licorice extract (25 mg/day), for a week. Blood samples before (T0) and after (T1) treatment were analyzed for: i) band 3 tyrosine phosphorylation and high molecular weight aggregates; and ii) glutathionylation and carbonic anhydrase activity, in the presence or absence of adjunctive oxidative stress induced by DDS-NHOH. Results were correlated with plasma glycyrrhetinic acid (GA) concentrations, measured by HPLC-MS. Results showed that licorice intake decreased the level of DDS-NHOH-related oxidative alterations in RBCs, and the reduction was directly correlated with plasma GA concentration. In conclusion, in PG, the inability to counteract oxidative stress is a serious concern in the evaluation of therapeutic approaches. GA, by protecting RBC from oxidative assault, as in dapsone therapy, might be considered as a new potential tool for preventing further switching into severe endometriosis.


Subject(s)
Anti-Infective Agents/adverse effects , Dapsone/adverse effects , Endometriosis/chemically induced , Glycyrrhiza , Plant Extracts/therapeutic use , Protective Agents/therapeutic use , Adult , Antioxidants/therapeutic use , Endometriosis/prevention & control , Erythrocytes/drug effects , Female , Glycyrrhiza/chemistry , Humans , Oxidative Stress/drug effects , Young Adult
8.
Mayo Clin Proc ; 95(6): 1213-1221, 2020 06.
Article in English | MEDLINE | ID: covidwho-1450185

ABSTRACT

As the coronavirus disease 19 (COVID-19) global pandemic rages across the globe, the race to prevent and treat this deadly disease has led to the "off-label" repurposing of drugs such as hydroxychloroquine and lopinavir/ritonavir, which have the potential for unwanted QT-interval prolongation and a risk of drug-induced sudden cardiac death. With the possibility that a considerable proportion of the world's population soon could receive COVID-19 pharmacotherapies with torsadogenic potential for therapy or postexposure prophylaxis, this document serves to help health care professionals mitigate the risk of drug-induced ventricular arrhythmias while minimizing risk of COVID-19 exposure to personnel and conserving the limited supply of personal protective equipment.


Subject(s)
Death, Sudden, Cardiac , Hydroxychloroquine , Long QT Syndrome , Lopinavir , Risk Adjustment/methods , Ritonavir , Torsades de Pointes , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Drug Combinations , Drug Monitoring/methods , Drug Repositioning/ethics , Drug Repositioning/methods , Electrocardiography/methods , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/mortality , Long QT Syndrome/therapy , Lopinavir/administration & dosage , Lopinavir/adverse effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Torsades de Pointes/chemically induced , Torsades de Pointes/mortality , Torsades de Pointes/therapy
11.
JAMA ; 325(14): 1426-1435, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-1201461

ABSTRACT

Importance: Ivermectin is widely prescribed as a potential treatment for COVID-19 despite uncertainty about its clinical benefit. Objective: To determine whether ivermectin is an efficacious treatment for mild COVID-19. Design, Setting, and Participants: Double-blind, randomized trial conducted at a single site in Cali, Colombia. Potential study participants were identified by simple random sampling from the state's health department electronic database of patients with symptomatic, laboratory-confirmed COVID-19 during the study period. A total of 476 adult patients with mild disease and symptoms for 7 days or fewer (at home or hospitalized) were enrolled between July 15 and November 30, 2020, and followed up through December 21, 2020. Intervention: Patients were randomized to receive ivermectin, 300 µg/kg of body weight per day for 5 days (n = 200) or placebo (n = 200). Main Outcomes and Measures: Primary outcome was time to resolution of symptoms within a 21-day follow-up period. Solicited adverse events and serious adverse events were also collected. Results: Among 400 patients who were randomized in the primary analysis population (median age, 37 years [interquartile range {IQR}, 29-48]; 231 women [58%]), 398 (99.5%) completed the trial. The median time to resolution of symptoms was 10 days (IQR, 9-13) in the ivermectin group compared with 12 days (IQR, 9-13) in the placebo group (hazard ratio for resolution of symptoms, 1.07 [95% CI, 0.87 to 1.32]; P = .53 by log-rank test). By day 21, 82% in the ivermectin group and 79% in the placebo group had resolved symptoms. The most common solicited adverse event was headache, reported by 104 patients (52%) given ivermectin and 111 (56%) who received placebo. The most common serious adverse event was multiorgan failure, occurring in 4 patients (2 in each group). Conclusion and Relevance: Among adults with mild COVID-19, a 5-day course of ivermectin, compared with placebo, did not significantly improve the time to resolution of symptoms. The findings do not support the use of ivermectin for treatment of mild COVID-19, although larger trials may be needed to understand the effects of ivermectin on other clinically relevant outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT04405843.


Subject(s)
COVID-19 Drug Treatment , Ivermectin/therapeutic use , Adult , Aged , Anti-Infective Agents/adverse effects , Double-Blind Method , Drug Administration Schedule , Female , Humans , Ivermectin/adverse effects , Male , Middle Aged , Patient Acuity , SARS-CoV-2/isolation & purification , Time Factors , Treatment Failure
12.
JAMA Netw Open ; 4(4): e216842, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1198342

ABSTRACT

Importance: Critical illness, a marked inflammatory response, and viruses such as SARS-CoV-2 may prolong corrected QT interval (QTc). Objective: To evaluate baseline QTc interval on 12-lead electrocardiograms (ECGs) and ensuing changes among patients with and without COVID-19. Design, Setting, and Participants: This cohort study included 3050 patients aged 18 years and older who underwent SARS-CoV-2 testing and had ECGs at Columbia University Irving Medical Center from March 1 through May 1, 2020. Patients were analyzed by treatment group over 5 days, as follows: hydroxychloroquine with azithromycin, hydroxychloroquine alone, azithromycin alone, and neither hydroxychloroquine nor azithromycin. ECGs were manually analyzed by electrophysiologists masked to COVID-19 status. Multivariable modeling evaluated clinical associations with QTc prolongation from baseline. Exposures: COVID-19, hydroxychloroquine, azithromycin. Main Outcomes and Measures: Mean QTc prolongation, percentage of patients with QTc of 500 milliseconds or greater. Results: A total of 965 patients had more than 2 ECGs and were included in the study, with 561 (58.1%) men, 198 (26.2%) Black patients, and 191 (19.8%) aged 80 years and older. There were 733 patients (76.0%) with COVID-19 and 232 patients (24.0%) without COVID-19. COVID-19 infection was associated with significant mean QTc prolongation from baseline by both 5-day and 2-day multivariable models (5-day, patients with COVID-19: 20.81 [95% CI, 15.29 to 26.33] milliseconds; P < .001; patients without COVID-19: -2.01 [95% CI, -17.31 to 21.32] milliseconds; P = .93; 2-day, patients with COVID-19: 17.40 [95% CI, 12.65 to 22.16] milliseconds; P < .001; patients without COVID-19: 0.11 [95% CI, -12.60 to 12.81] milliseconds; P = .99). COVID-19 infection was independently associated with a modeled mean 27.32 (95% CI, 4.63-43.21) millisecond increase in QTc at 5 days compared with COVID-19-negative status (mean QTc, with COVID-19: 450.45 [95% CI, 441.6 to 459.3] milliseconds; without COVID-19: 423.13 [95% CI, 403.25 to 443.01] milliseconds; P = .01). More patients with COVID-19 not receiving hydroxychloroquine and azithromycin had QTc of 500 milliseconds or greater compared with patients without COVID-19 (34 of 136 [25.0%] vs 17 of 158 [10.8%], P = .002). Multivariable analysis revealed that age 80 years and older compared with those younger than 50 years (mean difference in QTc, 11.91 [SE, 4.69; 95% CI, 2.73 to 21.09]; P = .01), severe chronic kidney disease compared with no chronic kidney disease (mean difference in QTc, 12.20 [SE, 5.26; 95% CI, 1.89 to 22.51; P = .02]), elevated high-sensitivity troponin levels (mean difference in QTc, 5.05 [SE, 1.19; 95% CI, 2.72 to 7.38]; P < .001), and elevated lactate dehydrogenase levels (mean difference in QTc, 5.31 [SE, 2.68; 95% CI, 0.06 to 10.57]; P = .04) were associated with QTc prolongation. Torsades de pointes occurred in 1 patient (0.1%) with COVID-19. Conclusions and Relevance: In this cohort study, COVID-19 infection was independently associated with significant mean QTc prolongation at days 5 and 2 of hospitalization compared with day 0. More patients with COVID-19 had QTc of 500 milliseconds or greater compared with patients without COVID-19.


Subject(s)
Azithromycin , COVID-19 Drug Treatment , COVID-19 , Electrocardiography , Hydroxychloroquine , Long QT Syndrome , Aged, 80 and over , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Azithromycin/administration & dosage , Azithromycin/adverse effects , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing/methods , Drug Therapy, Combination/methods , Drug Therapy, Combination/statistics & numerical data , Electrocardiography/methods , Electrocardiography/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Long QT Syndrome/epidemiology , Long QT Syndrome/virology , Male , Middle Aged , New York/epidemiology , Outcome and Process Assessment, Health Care , Risk Factors , SARS-CoV-2 , Time Factors
13.
BMJ Case Rep ; 14(3)2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1150214

ABSTRACT

Hydroxychloroquine has been widely prescribed to treat patients with COVID-19 pneumonia. A 73-year-0ld woman with COVID-19 pneumonia was treated with dexamethasone and hydroxychloroquine. Her home medications, citalopram and donepezil, were continued. The ECG prior to starting hydroxychloroquine showed normal sinus rhythm with prolonged corrected QT (QTc) of 497 ms, due to citalopram and donepezil therapy. Repeat ECG on days 3 and 4 of hydroxychloroquine therapy showed significantly prolonged QTc of 557 ms and 538 ms, respectively, despite normal serum electrolytes. All QT-prolonging medications including hydroxychloroquine were discontinued on day 4; however, she suffered a transient torsades de pointes lasting for about 15 s, which resolved before any intervention. QTc improved to 477 ms, after discontinuation of QT-prolonging medications. The patient had QTc prolongation and torsades de pointes due to therapy with multiple QT-prolonging medications. Medicine reconciliation and careful monitoring of QTc may help prevent cardiac complications in patients with COVID-19 treated with hydroxychloroquine.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/adverse effects , Hydroxychloroquine/adverse effects , Torsades de Pointes/chemically induced , Aged , Anti-Infective Agents/adverse effects , Anti-Infective Agents/therapeutic use , Citalopram/adverse effects , Citalopram/therapeutic use , Dexamethasone/therapeutic use , Donepezil/adverse effects , Donepezil/therapeutic use , Drug Therapy, Combination , Electrocardiography/methods , Female , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Humans , Hydroxychloroquine/therapeutic use , Long QT Syndrome/chemically induced , SARS-CoV-2
14.
Anatol J Cardiol ; 25(3): 184-190, 2021 03.
Article in English | MEDLINE | ID: covidwho-1125300

ABSTRACT

OBJECTIVE: The effects of treatment of coronavirus disease 2019 (COVID-19) with a triple combination composed of hydroxychloroquine, an an-tiviral, and an antibiotic on electrocardiography (ECG) parameters in patients with mild-to-moderate symptoms are not wholly understood. We aimed to explore the changes in ECG parameters after treatment with triple combination therapy in patients with mild-to-moderate symptomatic COVID-19. METHODS: This retrospective, single-center case series analyzed 91 patients with mild-to-moderate symptomatic COVID-19 at Ankara Gazi Mus-tafa Kemal State Hospital of Ankara City, Turkey, from April 1, 2020, to April 30, 2020. Forty-three patients were treated with hydroxychloroquine+oseltamivir+azithromycin (Group 1) and 48 patients were treated with hydroxychloroquine+oseltamivir+levofloxacin (Group 2). Heart rate, P wave duration, P wave dispersion, PR interval, QRS duration, corrected QT interval (QTc), QTc dispersion (QTD), delta QTc, Tp-e, Tp-e dispersion, and Tp-e/QTc ratio were all calculated from the baseline and posttreatment 12-lead ECG recordings. RESULTS: The QTc, QRS duration, Tp-e, PR interval, and P wave duration were significantly increased after treatment (p<0.001; p<0.001; p<0.001; p=0.001; p=0.001). The posttreatment C-reactive protein level was significantly lower than at baseline in Group 1 (p=0.014). At admission, 30% of patients had QT prolongation, and 4.3% of them had a QT duration >500 ms. Both Group 1 and Group 2 showed significant prolongation of the QTc interval (Group 1; p<0.001 vs. Group 2; p<0.001), QRS duration (Group 1; p=0.006 vs. Group 2; p=0.014), Tp-e (Group 1; p=0.036 vs. Group 2; p<0.001), and PR interval (Group 1; p=0.002 vs. Group2; p=0.05). The QTD was significantly decreased in Group 1 (p<0.001). None of the patients experienced any overt ventricular arrhythmia. CONCLUSION: To the best of our knowledge, this study is the first to investigate QT prolongation in a population of COVID-19 patients treated with triple combination therapy. We found that there was a significant decrease in the QTD after the treatment in patients who were taking triple therapy including azithromycin.


Subject(s)
COVID-19 Drug Treatment , Long QT Syndrome/chemically induced , SARS-CoV-2 , Adolescent , Adult , Aged , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/pathology , Drug Therapy, Combination , Electrocardiography , Female , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Levofloxacin/administration & dosage , Levofloxacin/adverse effects , Long QT Syndrome/physiopathology , Male , Middle Aged , Oseltamivir/administration & dosage , Oseltamivir/adverse effects , Retrospective Studies , Severity of Illness Index , Treatment Outcome , Young Adult
15.
Eur J Pharmacol ; 898: 173934, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1086916

ABSTRACT

Metformin is the most commonly prescribed oral antidiabetic medication. Direct/indirect activation of Adenosine Monophosphate-activated protein kinase (AMPK) and non-AMPK pathways, amongst others, are deemed to explain the molecular mechanisms of action of metformin. Metformin is an established insulin receptor sensitising antihyperglycemic agent, is highly affordable, and has superior safety and efficacy profiles. Emerging experimental and clinical evidence suggests that metformin has pleiotropic non-glycemic effects. Metformin appears to have weight stabilising, renoprotective, neuroprotective, cardio-vascular protective, and antineoplastic effects and mitigates polycystic ovarian syndrome. Anti-inflammatory and antioxidant effects of metformin seem to qualify it as an adjunct therapy in treating infectious diseases such as tuberculosis, viral hepatitis, and the current novel Covid-19 infections. So far, metformin is the only prescription medicine relevant to the emerging field of senotherapeutics. Non-glycemic effects of metformin favourable to its repurposing in therapeutic use are hereby discussed.


Subject(s)
Anti-Infective Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Hypoglycemic Agents/therapeutic use , Immunologic Factors/therapeutic use , Metformin/therapeutic use , Protective Agents/therapeutic use , Animals , Anti-Infective Agents/adverse effects , Antineoplastic Agents/adverse effects , COVID-19/epidemiology , Cardiovascular Diseases/prevention & control , Female , Humans , Hypoglycemic Agents/adverse effects , Immunologic Factors/adverse effects , Kidney Diseases/prevention & control , Metabolic Syndrome/drug therapy , Metformin/adverse effects , Obesity/drug therapy , Pandemics , Polycystic Ovary Syndrome/drug therapy , Protective Agents/adverse effects , SARS-CoV-2 , COVID-19 Drug Treatment
16.
Int J Risk Saf Med ; 32(1): 3-17, 2021.
Article in English | MEDLINE | ID: covidwho-1058394

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral illness caused by severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) presenting with pulmonary and extra-pulmonary manifestations. The first case was reported in Wuhan, China in December 2019 and it has rapidly progressed to the form of a pandemic. The presentation is mild in about 80 percent of the cases but the disease can also progress to a severe form of respiratory illness leading to acute respiratory distress syndrome (ARDS) and sometimes multi-organ failure, especially in people with other co-morbidities. Pregnant women also appear to be at a greater risk of acquiring a severe infection due to physiological changes during pregnancy. Many drugs with in vitro activity against the virus or an immunomodulatory effect have been considered for repurposing or have been tried as off-label drugs. The safety data regarding the use of newly approved or off-label or investigational drugs in pregnant women is limited and this poses a great challenge for clinicians. Therefore, it is important to know the utility and safety of the medications to avoid untoward adverse effects on pregnant women and fetuses. In this review, we aim to provide an overview of the approved, off-label, unlicensed, new and some promising pharmacological options for their use in the treatment of COVID-19 and the safety profile in pregnancy in an Indian scenario.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Fetus/drug effects , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/virology , Anti-Infective Agents/adverse effects , Anti-Infective Agents/therapeutic use , Antiviral Agents/adverse effects , COVID-19/epidemiology , Drugs, Investigational , Female , Humans , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , India/epidemiology , Off-Label Use , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnant Women , SARS-CoV-2 , Steroids/adverse effects , Steroids/therapeutic use
17.
N Engl J Med ; 384(5): 417-427, 2021 02 04.
Article in English | MEDLINE | ID: covidwho-963653

ABSTRACT

BACKGROUND: Current strategies for preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are limited to nonpharmacologic interventions. Hydroxychloroquine has been proposed as a postexposure therapy to prevent coronavirus disease 2019 (Covid-19), but definitive evidence is lacking. METHODS: We conducted an open-label, cluster-randomized trial involving asymptomatic contacts of patients with polymerase-chain-reaction (PCR)-confirmed Covid-19 in Catalonia, Spain. We randomly assigned clusters of contacts to the hydroxychloroquine group (which received the drug at a dose of 800 mg once, followed by 400 mg daily for 6 days) or to the usual-care group (which received no specific therapy). The primary outcome was PCR-confirmed, symptomatic Covid-19 within 14 days. The secondary outcome was SARS-CoV-2 infection, defined by symptoms compatible with Covid-19 or a positive PCR test regardless of symptoms. Adverse events were assessed for up to 28 days. RESULTS: The analysis included 2314 healthy contacts of 672 index case patients with Covid-19 who were identified between March 17 and April 28, 2020. A total of 1116 contacts were randomly assigned to receive hydroxychloroquine and 1198 to receive usual care. Results were similar in the hydroxychloroquine and usual-care groups with respect to the incidence of PCR-confirmed, symptomatic Covid-19 (5.7% and 6.2%, respectively; risk ratio, 0.86 [95% confidence interval, 0.52 to 1.42]). In addition, hydroxychloroquine was not associated with a lower incidence of SARS-CoV-2 transmission than usual care (18.7% and 17.8%, respectively). The incidence of adverse events was higher in the hydroxychloroquine group than in the usual-care group (56.1% vs. 5.9%), but no treatment-related serious adverse events were reported. CONCLUSIONS: Postexposure therapy with hydroxychloroquine did not prevent SARS-CoV-2 infection or symptomatic Covid-19 in healthy persons exposed to a PCR-positive case patient. (Funded by the crowdfunding campaign YoMeCorono and others; BCN-PEP-CoV2 ClinicalTrials.gov number, NCT04304053.).


Subject(s)
Anti-Infective Agents/therapeutic use , COVID-19/prevention & control , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Adult , Anti-Infective Agents/adverse effects , COVID-19/transmission , COVID-19/virology , Disease Transmission, Infectious/prevention & control , Double-Blind Method , Female , Humans , Hydroxychloroquine/adverse effects , Male , Middle Aged , Patient Compliance , Treatment Failure , Viral Load
18.
Cochrane Database Syst Rev ; 9: CD013626, 2020 09 16.
Article in English | MEDLINE | ID: covidwho-959059

ABSTRACT

BACKGROUND: COVID-19 infection poses a serious risk to patients and - due to its contagious nature - to those healthcare workers (HCWs) treating them. If the mouth and nose of HCWs are irrigated with antimicrobial solutions, this may help reduce the risk of active infection being passed from infected patients to HCWs through droplet transmission or direct contact. However, the use of such antimicrobial solutions may be associated with harms related to the toxicity of the solutions themselves, or alterations in the natural microbial flora of the mouth or nose. Understanding these possible side effects is particularly important when the HCWs are otherwise fit and well. OBJECTIVES: To assess the benefits and harms of antimicrobial mouthwashes and nasal sprays used by healthcare workers (HCWs) to protect themselves when treating patients with suspected or confirmed COVID-19 infection. SEARCH METHODS: Information Specialists from Cochrane ENT and Cochrane Oral Health searched the Central Register of Controlled Trials (CENTRAL 2020, Issue 6); Ovid MEDLINE; Ovid Embase and additional sources for published and unpublished trials. The date of the search was 1 June 2020.  SELECTION CRITERIA: This is a question that urgently requires evidence, however at the present time we did not anticipate finding many completed randomised controlled trials (RCTs). We therefore planned to include the following types of studies: RCTs; quasi-RCTs; non-randomised controlled trials; prospective cohort studies; retrospective cohort studies; cross-sectional studies; controlled before-and-after studies. We set no minimum duration for the studies.   We sought studies comparing any antimicrobial mouthwash and/or nasal spray (alone or in combination) at any concentration, delivered to HCWs, with or without the same intervention being given to the patients with COVID-19. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. Our primary outcomes were: 1) incidence of symptomatic or test-positive COVID-19 infection in HCWs; 2) significant adverse event: anosmia (or disturbance in sense of smell). Our secondary outcomes were: 3) viral content of aerosol, when present (if intervention administered to patients); 4) other adverse events: changes in microbiome in oral cavity, nasal cavity, oro- or nasopharynx; 5) other adverse events: allergy, irritation/burning of nasal, oral or oropharyngeal mucosa (e.g. erosions, ulcers, bleeding), long-term staining of mucous membranes or teeth, accidental ingestion. We planned to use GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS: We found no completed studies to include in this review. We identified three ongoing studies (including two RCTs), which aim to enrol nearly 700 participants. The interventions included in these trials are povidone iodine, nitric oxide and GLS-1200 oral spray (the constituent of this spray is unclear and may not be antimicrobial in nature).   AUTHORS' CONCLUSIONS: We identified no studies for inclusion in this review. This is not surprising given the relatively recent emergence of COVID-19 infection. It is promising that the question posed in this review is being addressed by two RCTs and a non-randomised study. We are concerned that only one of the ongoing studies specifically states that it will evaluate adverse events and it is not clear if this will include changes in the sense of smell or to the oral and nasal microbiota, and any consequences thereof. Very few interventions have large and dramatic effect sizes. If a positive treatment effect is demonstrated when studies are available for inclusion in this review, it may not be large. In these circumstances in particular, where those receiving the intervention are otherwise fit and well, it may be a challenge to weigh up the benefits against the harms if the latter are of uncertain frequency and severity.


Subject(s)
Anti-Infective Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/transmission , Health Personnel , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Mouthwashes/administration & dosage , Nasal Sprays , Pneumonia, Viral/transmission , Anti-Infective Agents/adverse effects , COVID-19 , Coronavirus Infections/prevention & control , Humans , Mouth/virology , Mouthwashes/adverse effects , Nose/virology , Occupational Diseases/etiology , Occupational Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Therapeutic Irrigation
20.
BMJ Case Rep ; 13(8)2020 Aug 24.
Article in English | MEDLINE | ID: covidwho-827667

ABSTRACT

Methaemoglobinaemia is a rare disease that is typically caused by a medication or other exogenous agent, with dapsone being the most common. It occurs when the concentration of methaemoglobin rises via ferrous haeme irons becoming oxidised to the ferric state, which shifts the oxygen dissociation curve to the left. The net result of an elevated methaemoglobin concentration is functional anaemia and impaired oxygen delivery to tissues. At lower blood levels, this can cause symptoms such as cyanosis, lethargy, headache and fatigue, whereas at higher levels it can be fatal. Here we discuss a subtle case of dapsone-induced methaemoglobinaemia presenting as subacute mental status changes and apparent hypoxia, thus highlighting the association between methaemoglobinaemia and dapsone. This case demonstrates the importance of thorough medication reconciliation and maintaining a broad differential diagnosis, while also recognising the significance of conflicting data and their implications for the workup.


Subject(s)
Anti-Infective Agents/adverse effects , Dapsone/adverse effects , Methemoglobinemia , Aged , Confusion/chemically induced , Female , Humans , Memory Disorders/chemically induced , Methemoglobin/analysis , Methemoglobinemia/chemically induced , Methemoglobinemia/diagnosis , Oxygen/blood
SELECTION OF CITATIONS
SEARCH DETAIL